Tetrahedron Letters, Vol.26, No.7, pp 865-868, 1985 Printed in Great Britain 0040-4039/85 \$3.00 + .00 ©1985 Pergamon Press Ltd.

Enantioselective Synthesis of (-)-Elenolic Acid and (-)-Ajmalicine

Susumi Hatakeyama, Keiichi Saijo, and Seiichi Takano^{*} Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

<u>Summary</u>: A secoiridoid monoterpene (-)-elenolic acid and a representative heteroyohimbine alkaloid (-)-ajmalicine have been synthesized enantio- and stereoselectively using L-ethyl lactate as a chiral starting material.

Elenolic acid $(\underline{1})$ is a secoiridoid monoterpene isolated from olive (<u>Olea</u> <u>europea</u>).¹ It is biologically closely related to secologanin (<u>4</u>) and contains a tetrasubstituted dihydropyran system as a characteristic structural element in common with ajmalicine (<u>5</u>) and sarracenin (<u>6</u>). The synthesis^{2,3} of elenolic acid derivatives (<u>1-3</u>), particularly methyl elenolate (<u>2</u>), has attracted great attention not only because of their broad range antiviral activity⁴ but also their synthetic utility⁵ as a precursor of ajmalicine (<u>5</u>), a therapeutically important heteroyohimbine alkaloid. We now wish to report a chiral synthesis of (-)-elenolic acid (<u>1</u>) and its derivative (-)-methyl elenolate (<u>2</u>) from L-ethyl lactate (<u>7</u>) and also to report conversion of <u>2</u> to (-)-ajmalicine (5).

 $\underline{2}$, R=Me $\underline{3}$, R=Ca/2

L-Ethyl lactate ($\underline{7}$) was converted to the tetrahydropyranyl ether <u>8</u> (DHP, PPTS, CH₂Cl₂, rt) which, upon reduction with lithium aluminum hydride (THF, -50 °C), gave the alcohol <u>9</u>. ⁶ Swern oxidation of <u>9</u> followed by Horner-Emons reaction using triethyl phosphonoacetate (NaH, THF, -78 °C) afforded the E-unsaturated ester <u>10</u> which was then reduced with aluminum hydride (Et₂O, -60 °C) to give the allylic alcohol <u>11</u> in 80% overall yield from <u>7</u>. Orthoester Claisen rearrangement⁷ of <u>11</u> using ethyl orthoacetate (cat. ^tBuCO₂H, 140 °C) followed by treatment with pyridinium p-toluenesulfonate (EtOH, reflux) provided the <u>cis- γ -lactone 13</u>, ⁸ bp₂₅ 110 °C (Kugelrohr), [α]_D -54.3° (CHCl₃), δ (CDCl₃): 1.30 (3H, d, J=7 Hz), 4.68 (1H, quint, J=7 Hz), and <u>trans- γ -lactone 14</u>, bp₂₀ 130 °C (Kuglrohr), [α]_D -75.9° (CHCl₃), δ (CDCl₃): 1.38 (3H, d, J=7 Hz), 4.25 (1H, d quint, J=2 and 7 Hz), in a ratio of 3 : 1 in 60% overall yield from <u>11</u>. Although this type of allylic alkoxy directed Claisen rearrangement

865

has not been examined in view of diastereofacial selection so far,¹⁰ one might rationalize the production of the <u>cis</u>- γ -lactone <u>13</u> as the major product of this reaction sequence by assuming a transition state resembling either "inside alkoxy model" or "Felkin type model".¹¹

Then, according to the method established previously,⁹ the <u>cis-Y</u>-lactone <u>13</u> was transformed into the key chiral δ -lactone <u>18</u>, $[\alpha]_D$ -81.0° (CHCl₃), in 55% overall yield by the following sequence: (1) stereoselective alkylation of <u>13</u> using allyl bromide (LDA, THF, -78 °C); (2) lactone to lactol reduction (DIBAL, CH₂Cl₂, -78 °C) and Wittig reaction using α -methoxymethylenetriphenyl-phosphorane (glyme, rt); (3) protection (^tBuMe₂SiCl, imidazole, DMF, rt) and oxidation¹² with pyridinium chlorochromate (CH₂Cl₂, rt); (4) acidic methanolysis (p-TsOH, MeOH, reflux).

Heating the lactone <u>18</u> with N,N-dimethylformamide dimethyl acetal in a sealed tube (170 $^{\circ}$ C, 3 days) gave the vinylogous urethane <u>19</u> which was successively subjected to acid hydrolysis (lN-HCl, Et₂O, rt) and acyl-lactone rearrangement¹³ (5% H₂SO₄-MeOH, reflux) to afford the dyhydropyran <u>20</u>, [α J_D -208.8° (CHCl₃), in 55% overall yield from <u>18</u>. Treatment of <u>20</u> with one molar equivalent of osmium tetroxide (pyridine, 0 $^{\circ}$ C) followed by reductive work-up (2% NaHSO₃, rt) allowed highly selective hydroxylation at the double bond of the allyl substituent to give a 8 : 7 epimeric mixture of the diol <u>21</u>. The diol <u>21</u> was then cleaved with lead tetraacetate (THF, 0 $^{\circ}$ C) to the aldehyde <u>22</u> which was directly converted to the acid <u>23</u>, [α J_D -121.7° (CHCl₃), by Jones oxidation in 65% overall yield from <u>20</u>.

Finally, Lemieux-Johnson oxidation¹⁴ of 23 (10 mol % OsO₄, 2.5 equiv.

NaIO₄, aq. THF, 0 °C) furnished (-)-elenolic acid (<u>1</u>), [α]_D -77.7° (CHCl₃), in 40-55% yield (50-65% yield based on the consumed <u>23</u>).^{15, 16} Synthetic <u>1</u> exhibited spectral properties (¹H-NMR, IR, MS) in accord with those of natural substance.¹⁷ Further identy of the synthesis of <u>1</u> was established by the fact that esterification of <u>1</u> (CH₂N₂, Et₂O, rt) gave (-)-methyl elenolate (<u>2</u>) quantitatively. The spectral data (¹H-NMR, IR, MS) and the optical rotation of the synthetic material, [α]_D -117.0° (CHCl₃), were identical with those of authentic (-)-methyl elenolate (<u>2</u>), [α]_D -111.4° (CHCl₃), prepared from natural elenolic acid (<u>1</u>) on treatment with diazomethane.

Furthermore, synthetic (-)-methyl elenolate (<u>2</u>) was converted to (-)-ajmalicine (<u>5</u>) by the basically same procedure as reported by Kelly.⁵ Reductive amination¹⁸ of <u>2</u> using tryptamine perchlorate (NaBH₃CN, MeOH, rt) followed by heating (toluene, reflux) gave the lactam <u>24</u>, mp 202.0-202.5 °C (lit.⁵ 172-174 °C), $[\alpha]_D$ +94.1° (CHCl₃), in 79% yield. Bischler-Napieralski cyclization of <u>24</u> (POCl₃, benzene, reflux) gave the immonium salt which was immediately reduced with sodium borohydride (MeOH, 0 °C) to furnish (-)-ajmalicine (<u>5</u>), mp 257-258 °C (lit.⁵ 257 °C), $[\alpha]_D$ -40.2° (MeOH) (lit.⁵ -39°), in 45% yield.¹⁹

<u>Acknowledgment</u>: We are grateful to Dr. R. C. Kelly (Upjohn Company) for providing us the authentic sample of (-)-calcium elenolate and spectral data $(^{1}$ H-NMR, IR) of (-)-calcium elenolate and (-)-methyl elenolate.

References and Notes:

- Weer, W. L. C.; Gerris, V.; Ribbers, J. E.; Oud, P. J.; Van Ree, P. J.; Beyerman, H. C.; Bontekoe, J. S. <u>Rec. Trav. Chim.</u> 1957, <u>76</u>, 839.
- For total synthesis of dl-methyl elenolate; see: Kelly, R. C.; Schletter, I. J. Am. Chem. Soc. 1973, 95, 7156.
- For synthetic study of elenolic acid; see: (a) Snider, B. B.; Roush, D. M.; Killinger, T. A. J. Am. Chem. Soc. 1979, 101, 6023; (b) Tixidre, A.; Alazard, J.-P.; Thal, C. <u>Tetrahedron Lett.</u> 1983, 24, 3323.

- (a) Renis, H. E. <u>Antimicrob. Agents Chemother.</u> 1970, <u>1969</u>, 167; (b) Soret,
 M. G. <u>ibid</u>, <u>1970</u>, <u>1969</u>, 160; (c) Elliot, G. A.; DeYoung, E. N. <u>ibid</u>, 1970, <u>1969</u>, 173.
- 5. MacKellar, F. A.; Kelly, R. C.; van Tamelen, E. E.; Dorschel, C. <u>J. Am.</u> Chem. Soc. <u>1973</u>, <u>95</u>, 7155.
- 6. All new compounds gave satisfactory spectral (¹H-NMR, IR, MS) and analytical (high resolution MS) data.
- Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741.
- The overall yield of <u>15</u> was largely improved compared with the previously developed method⁹ using D-glucose as a chiral starting material.
- 9. Takano, S.; Morikawa, K.; Hatakeyama, S. Tetrahedron Lett. 1983, 24, 401.
- 10. For example, see: Kametani, T.; Suzuki, T.; Nishimura, M.; Sato, E.; Unno, K. Heterocycles 1982, 19, 205.
- Arguments based on "inside alkoxy model" and "Felkin type model" have recently been invoked by Houk and Kozikowski to rationalize the stereochemistry of nitrile oxide cycloadditions to chiral allyl ethers: (a) Houk, K. N.; Moses, S. R.; Wu, Y.-D.; Rondan, N. G.; Jager, V.; Schohe, R.; Fronczek, F. R. J. Am. Chem. Soc. 1984, 106, 3880 and references therein; (b) Kozikowski, A. P.; Ghosh, A. K. J. Org. Chem. 1984, 49, 2762 and references therein.
- 12. Piancatelli, G.; Scettri, A.; D'Auria, M. <u>Tetrahedron Lett.</u> 1977, 3483.
- 13. (a) Korte, F.; Machleidt, H. <u>Chem. Ber.</u> 1955, <u>88</u>, 136; (b) Ban, Y.; Taga,
 N.; Oishi, T. <u>Chem. Pharm. Bull (Tokyo)</u>. 1976, <u>24</u>, 736; (c) Uskokovic, M.
 R.; Lewis, R. L.; Partridge, J. J.; Despreaux, C. W.; Pruess, D. L. <u>J. Am.</u>
 <u>Chem. Soc.</u> 1979, <u>101</u>, 6742.
- Pappo, R.; Allen, D. S.; Lemieux, R. U.; Johnson, W. S. <u>J. Org. Chem.</u> 1956, 21, 478.
- 15. The vinyl side chain of <u>23</u> was oxidaized selectively in the early stages of the reaction, but prolonging the reaction time led to over-oxidation of the dihydropyran moiety and diminished the yield of <u>1</u>. The similar observation was reported in the case of osmylation of secologanin tetraacetate: Purdy, J. R.; Hamilton, R. G.; Alxhter, L.; Mclean, S. <u>Can. J. Chem.</u> <u>1981</u>, <u>59</u>, 210.
- 16. (-)-Elenolic acid (<u>1</u>) was purified as follows: (1) preparative TLC (SiO₂, 0.2% AcOH-Et₂O) using 10% aq. THF for elution; (2) heating in water (80 ^OC, 15 min.); (3) extraction with methylene chloride. Without the second operation, this material could not be obtained in a pure form presumably because of partial formation of a hemiacetal between the aldehyde and the carboxylic acid residue during preparative TLC.
- 17. An authentic sample of (-)-elenolic acid ($\underline{1}$) was prepared by acidification of (-)-calcium elenolate ($\underline{3}$) graciously provided by Dr. R. C. Kelly.
- 18. Borch, R. F. Org. Syn. 1972, 52, 124.
- 19. The stereoisomer of 5, presumed to be the C(3)-epimer, was also obtained in 2% yield.

(Received in Japan 15 November 1984)