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Summary: A secoiridoid monoterpene (-)-elenolic acid and a representative 

heteroyohimbine alkaloid (-)-ajmalicine have been synthesized enantio- and 

stereoselectively using L-ethyl lactate as a chiral starting material. 

Elenolic acid (1) is a secoiridoid monoterpene isolated from olive (Olea 

europea). 
1 

It is biologically closely related to secologanin (4) and contains 

a tetrasubstituted dihydropyran system as a characteristic structural element 

in common with ajmalicine (5) and sarracenin (5). The synthesis 2,3 of elenolic - 
acid derivatives (l-3) --) particularly methyl elenolate (2), has attracted great 

attention not only because ofttheir broad range antiviral activity4 but also 

their synthetic utility5 as a precursor of ajmalicine (51, a therapeutically 

important heteroyohimbine alkaloid. We now wish to report a chiral synthesis 

of (-)-elenolic acid (1) and its derivative (-)-methyl elenolate (2) from 

L-ethyl lactate (1) and also to report conversion of 2 to (-)-ajmalicine (5). 
Me 

1, R=H 
L 

2, R=Me 2, R=Ca/2 

L-Ethyl lactate (1) was converted to the tetrahydropyranyl ether 8 (DHP, 

PPTS, CH2C12, rt) which, upon reduction with lithium aluminum hydride (THF, 

-50 OC), gave the alcohol 2. 6 Swern oxidation of 2 followed by Horner-Emons 

reaction using triethyl phosphonoacetate (NaH, THF, -78 OC) afforded the 

E-unsaturated ester 10 which was then reduced with aluminum hydride (Et20, - 
-60 OC) to give the allylic alcohol 11 in 80% overall yield from 7. Ortho- 

ester Claisen rearrangement7 of 11 using ethyl orthoacetate (cat. -t - 
OC) followed by treatment with pyridinium E-toluenesulfonate (EtOH, 

BuC02H, 140 

reflux) 

provided the cis-y-lactone 13, 
* bP25 110 OC (Kugelrohr), [ul, -54.3O (CHC13),6 

(CDC13): 1.30 (3H, d, J=7 Hz), 4.68 (lH, quint, J=7 Hz), and trans-y-lactone 

9, bpaO 130 OC (Kuglrohr), [al, -75.9O (CHC13), 6 (CDC13): 1.38 (3H, d, J=7 

Hz), 4.25 (lH, d quint, J=2 and 7 Hz), in a ratio of 3 : 1 in 60% overall yield 

from 11 _. Although this type of allylic alkoxy directed Claisen rearrangement 
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has not been examined in view of diastereofacial selection so far, 10 one might 

rationalize the production of the cis-y-lactone 13 as the major product of this - 
reaction sequence by assuming a transition state resembling either "inside 

alkoxy model" or "Felkin type model". 

x;_ Ye, 

'Et02C H&THP 

_ p_ _[*E~~_P+Me 

7_, R=H 9 12 - - 5, R=C02Et 

2, R=THP ll_, R=CH20H 
12, Rl=H, 

R2=CH=CH2 
OEt 

H+v2H = &pe 

K 

14, R1=CH=CH2, 

H 

g$..; = p:;R2=H 

Me OR H 

"inside alkoxy model" "Felkin type model" R=THP 

Then, according to the method established previously, ' the cis-Y-lactone 13 - 

was transformed into the key chiral d-lactone 3, [cl, -81.0° (CHC13), in 55% 

overall yield by the following sequence: (1) stereoselective alkylation of 13 - 

using ally1 bromide (LDA, THF, -78 OC); (2) lactone to lactol reduction (DIBAL, 

CH2C12, -78 OC) and Wittig reaction using u-methoxymethylenetriphenyl- 

phosphorane (glyme, rt); 

oxidation12 

(3) protection ctBuMe2SiCl, imidasole, DMF, rt) and 

with pyridinium chlorochromate (CH2C12, rt); (4) acidic 

methanolysis (p-TsOH, MeOH, reflux). 

i_~Me_$ZRl_~ 

15 - I&, R1=H, R2=HC=CHOMe 18 

17 _' R1=tBuMe Si, R'=CH CO M,' 
2 2 2 

Heating the lactone 18 with N,N-dimethylformamide dimethyl acetal in a - 
sealed tube (170 OC, 3 days) gave the vinylogous urethane 19 which was - 
successively subjected to acid hydrolysis (lN-HCl, 

13 
Et20, rt) and acyl-lactone 

rearrangement 

-208.8O (CHC13), 

(5% H2S04-MeOH, reflux) to afford the dyhydropyran 20, [aID 

in 55% overall yield from 18. Treatment of 20 with one molar - 

equivalent of osmium tetroxide (pyridine, OTC, followed by reductive work-up 

(2% NaHS03, rt) allowed highly selective hydroxylation at the double bond of 

the ally1 substituent to give a 8 : 7 epimeric mixture of the diol 21. The - 

diol 21 was then cleaved with lead tetraacetate (THF, 0 OC) to the aldehyde 22 - - 

which was directly converted to the acid 3, [cl, -121.7O (CHC13), by Jones 

oxidation in 65% overall yield from 20. 

Finally, 
-14 

Lemieux-Johnson oxidation of 23 (10 mol % 0s04, 2.5 equiv. - 
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VMe ~).$..Me~ff..Me ;yMe 
2 20, R=CH=CH2 1, R=H 

18 19 - - 5, R=CH(OH)CH2OH 2, R=Me 

22, R=CHO 23, R=C02H 

NaI04, aq. THF, 0 'C) furnished (-)-elenolic acid (1) 
- i51n& 

-77.7O (CHC131, in 

40-55% yield (50-65% yield based on the consumed 23). - Synthetic 1. 

exhibited spectral properties (lH-NMR, IR, MS) in accord with those of natural 

substance. 17 Further identy of the synthesis of L was established by the fact 

that esterification of 1 (CH2N2, - Et20, rt) gave (-)-methyl elenolate (2) 

quantitatively. The spectral data (lH-NMR, IR, MS) and the optical rotation of 

the synthetic material, [ulD -117.0° (CHC13), were identical with those of 

authentic (-)-methyl elenolate (21, [UID -111.4O (CHC13), prepared from natural 

elenolic acid (1) on treatment with diazomethane. - 
Furthermore, synthetic (-)-methyl elenolate (2) was converted to 

(-)-ajmalicine (5) by the basically same procedure as reported by Kelly.5 

Reductive amination 18 of 2 using tryptamine perchlorate (NaBH3CN, MeOH, rt) 

followed by heating (toluene, reflux) gave the lactam 2, mp 202.0-202.5 OC 

(lit.5 172-174 OC), [al, +94.1° (CHC13), in 79% yield. Bischler-Napieralski 

cyclization of 24 (POC13, benzene, - reflux) gave the immonium salt which was 

immediately reduced with sodium borohydride (MeOH, 0 'C) to furnish 

(-)-ajmalicine CS), mp 257-258 OC (lit.5 

-39O1, 

257 'Cl, [al, -40.2' (MeOH) (lit.5 

in 45% yield. 19 

Acknowledgment: We are grateful to Dr. R. C. Kelly (Upjohn Company) for 

providing us the authentic sample of (-)-calcium elenolate and spectral data 

(lH-NMR, IR) of (-)-calcium elenolate and (-)-methyl elenolate. 
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